What is blue hydrogen?
Blue hydrogen is when natural gas is split into hydrogen and CO2 either by Steam Methane Reforming (SMR) or Auto Thermal Reforming (ATR), but the CO2 is captured and then stored. As the greenhouse gasses are captured, this mitigates the environmental impacts on the planet.
The ‘capturing’ is done through a process called Carbon Capture Usage and Storage (CCUS). More about that in due course.
What is green hydrogen?
Green hydrogen is hydrogen produced by splitting water by electrolysis. This produces only hydrogen and oxygen. We can use the hydrogen and vent the oxygen to the atmosphere with no negative impact.
To achieve the electrolysis we need electricity, we need power. This process to make green hydrogen is powered by renewable energy sources, such as wind or solar. That makes green hydrogen the cleanest option – hydrogen from renewable energy sources without CO2 as a by-product. That is referred to in the project Petrofac is supporting in Australia, mentioned at the beginning.
What is grey hydrogen?
Grey hydrogen has been produced for many years. It is a similar process to blue hydrogen – SMR or ATR are used to split natural gas into Hydrogen and CO2. But the CO2 is not being captured and is released into the atmosphere.
What is pink hydrogen?
Similar to green hydrogen, pink hydrogen is made via electrolysis, but using nuclear energy as its source of power.
What is yellow hydrogen?
Another type of hydrogen made by electrolysis is yellow, where electrolysis is achieved solely through solar power (unlike green which could use a combination of renewable energy sources such as wind or solar).
Is the future multi-coloured?
The future is a transition from grey, through blue, to green hydrogen. One thing that is clear is the important role hydrogen will play in energy transition.
Let’s take the United Kingdom, one of Petrofac’s key markets, as an example. The country’s national energy system is changing rapidly as the UK makes plans to reach the legal net zero target by 2050. Although the UK is unlikely to produce sufficient quantities of green hydrogen to meet the targets and the demand, we are likely to see a transition period of 20-30 years where blue hydrogen plays a key role. And this is where the oil and gas industry, including Petrofac, can help by using existing, transferable knowledge and capability to produce blue hydrogen via Carbon Capture Usage and Storage (CCUS). We can use the existing UK offshore infrastructure to pipe the CO2 back to offshore reservoirs. Either as EOR (Extended Oil Recovery) to help keep up reservoir pressure, or into depleted reservoirs for safe storage.
To meet the global energy demand, while achieving the national and global energy efficiency targets, the industry is looking at every potential technology. There is great potential in both the blue and green hydrogen and both will play an important role in energy transition. With our knowledge and capability, we are there to support this transition.